Funkcja $f$ jest określona wzorem $f(x)=\frac{x}{2x-8}$ dla każdej liczby rzeczywistej $x\neq4$. Wówczas pochodna tej funkcji dla argumentu $x=\sqrt{2}+4$ jest równa
Dany jest nieskończony ciąg geometryczny, w którym iloraz jest trzy razy większy od pierwszego wyrazu, a suma wszystkich wyrazów tego ciągu jest równa $\frac{1}{4}$. Pierwszy wyraz tego ciągu jest równy
Funkcja kwadratowa $f(x)=-x^2+bx+c$ ma dwa miejsca zerowe: $x_1=-1$ i $x_2=12$. Oblicz największą wartość tej funkcji. Zakoduj kolejno, od lewej do prawej, cyfrę jedności i pierwsze dwie cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku.